Комбинированная броня, также композитная броня, реже многослойная броня тип брони, состоящий из двух или большего количества слоёв металлических или неметаллических материалов. «Пассивная защитная система (конструкция), содержащая, как минимум, два различных материала (не считая воздушных промежутков), предназначенная для обеспечения сбалансированной защиты от кумулятивных боеприпасов и боеприпасов кинетического действия, используемых в боекомплекте одной пушки высокого давления»[1].

В послевоенный период основным средством поражения тяжелых бронированных целей (основной боевой танк, ОБТ) становятся кумулятивные средства поражения, представленные, в первую очередь, динамично развивавшимися в 1950—1960-х годах противотанковыми управляемыми ракетами (ПТУР), бронепробивная способность боевых частей которых к началу 1960-х годов превысила 400 мм броневой стали.

Ответ для парирования угрозы со стороны кумулятивных средств поражения был найден в создании многослойной комбинированной брони с более высокой, по сравнению с гомогенной стальной броней, противокумулятивной стойкостью, содержащей материалы и конструктивные решения, в совокупности обеспечивающие повышенную струегасящую способность бронезащиты.


зднее, в 1970-х годах, на Западе были приняты на вооружение и получили распространение бронебойные оперенные подкалиберные снаряды 105 и 120-мм танковых пушек с сердечником из тяжелого сплава, обеспечение защиты от которых оказалось значительно более сложной задачей.

Разработка комбинированной брони для танков была начата практически одновременно в СССР и США во второй половине 1950-х годов и применялась на ряде опытных танков США того периода[2][3][4]. Тем не менее, среди серийных танков комбинированная броня была применена на советском основном боевом танке Т-64, чьё производство было начато в 1964 году[2], и использовалась на всех последующих основных боевых танках СССР.

На серийных танках других стран комбинированная броня различных схем появилась в 1979—1980 годах на танках «Леопард 2» и «Абрамс» и с 1980-х годов стала стандартом в мировом танкостроении. В США .


стали не хуже 350…450 мм)[1][6][7], однако, применительно к последним, не обеспечивала выигрыша по массе в сравнении с равностойкой стальной броней[8][9], и на поздних серийных модификациях последовательно наращивалась. Из-за высокой по сравнению с гомогенной бронёй стоимости и необходимости применения броневых преград большой толщины и массы для защиты от современных кумулятивных боеприпасов, применение комбинированной брони ограничивается основными боевыми танками и, реже, основным или навесным дополнительным бронированием БМП и других бронемашин лёгкой категории.

Противопульная комбинированная броня с керамикой[править | править код]

Являясь разновидностью конструктивной брони, комбинированная броня с керамическим лицевым слоем и подложкой из армированного пластика обладает рекордной стойкостью к действию бронебойных пуль при обстреле под малыми углами от нормали, что непосредственно связано с высокой (не менее 70 единиц по шкале Роквелла, HRC) твердостью, малой массовой плотностью керамического слоя.


условиях обстрела комбинированной брони под углами, близкими к нормали, её масса (сравнивается поверхностная плотность, кг/м²) в 2-3 раза меньше массы равностойкой стальной брони высокой твердости. Именно поэтому такая броня первоначально, еще в 1960-е годы, нашла применение для защиты экипажей и некоторых уязвимых агрегатов вертолётов, низкая скорость которых и действие в зонах досягаемости огня пехотного оружия, при практически круговом обстреле, обуславливают благоприятные для этой брони условия взаимодействия с поражающим средством.

Противопульная комбинированная броня состоит из лицевого слоя, выполненного в виде керамических элементов (пластин), и подложки из армированных пластиков. Высокая стойкость такой брони обуславливается эффективным разрушением на высокотвёрдом лицевом слое сердечников бронебойных пуль с последующим удержанием образующихся осколков керамики и сердечника энергоёмким тыльным слоем брони. Принципиальным является характер разрушения керамического слоя брони по типу «конуса разрушения», образованного системой радиальных и кольцевых трещин, направленного в сторону тыльного слоя и увеличивающего присоединенную массу брони[10].


есте с тем обширная область разрушений керамического слоя, наряду со значительными деформациями подложки в месте удара, в частности, в виде расслоений слоистых пластиков на значительной площади, обуславливают низкую, в сравнении с гомогенной сталью, живучесть керамической брони при обстреле. В силу указанных причин, на протяжении нескольких десятилетий, область её применения практически ограничивалась объектами, при обстреле бронезащиты которых низкая живучесть не являлась критичным фактором — летательными аппаратами, в первую очередь, вертолётами, и авиационными средствами индивидуальной бронезащиты.

История создания авиационной комбинированной брони[править | править код]

Толчком к созданию и широкому применению комбинированной брони с керамикой послужили военные действия США в Юго-Восточной Азии 1960-х годов. Массированное применение вертолётов для целей разведки, переброски войск и снаряжения, огневой поддержки и эвакуации раненых, показало их повышенную уязвимость со стороны наземного огня легкого пехотного оружия. Общее число сбитых вертолётов превысило четыре тысячи[11].

Анализ потерь позволил установить, что в тот период времени, на данном ТВД, основным средством поражения вертолётов являлось лёгкое автоматическое стрелковое оружие калибра 7,62 мм.

Для защиты кабины пилотов, жизненно-важных агрегатов и систем летательных аппаратов США, комбинированная броня с керамикой применяется с 1966 года.


период Вьетнамской войны броня с керамикой была установлена на вертолетах «Белл» UH-1B/C/D, AH-1 «Хью-Кобра», OH-58, Сикорский CH-54, на военно-транспортном самолете С-130, тактическом истребителе А-7 «Корсар» и на некоторых других машинах. В ряде случаев броня с керамикой заменила собой уступающую ей по весовой эффективности разнотвёрдую стальную броню DPSA (Dual Property Steel Armor). Так установка на вертолете AH-1G сидения из керамико-пластиковой брони с соотношением слоев: карбид бора 9,6 мм + стеклопластик 6,4 мм, вместо сидения из разнотвердой стали позволило снизить массу последнего на 10,4 кг[12].

Комбинированная броня марки Starmat (дата регистрации марки 1965 год) компании Aerojet General Corp. с лицевым слоем из корундовой керамики марок AD85 или AD95 и подложкой из алюминиевого сплава 2024-Т4 устанавливалась на первых модификациях вертолетов UH-1 и CH-54, в порядке их оперативной доработки в строевых частях. Бронепанели соединялись внахлестку и крепились непосредственно к трубчатому каркасу сидений 1-го и 2-го пилотов вертолета UH-1B. В специальных полозьях по бортам кабины устанавливались сдвижные бронепанели суммарной массой 49,6 кг, каждая панель на стороне соответствующей дверцы кабины. Бронепанели обеспечивали защиту боковой проекции пилота, и сдвигались назад при посадке или высадке экипажа из машины. Суммарная масса бронированного сидения 65 кг.


ебованиями по защите экипажа вертолета предусматривалось обеспечение 100 процентного непробития бронезащиты при стрельбе 7,62 мм бронебойной пулей М61 с дистанции 100 ярдов (91 м), угол соударения (от нормали) 15 градусов[13][14]. Тем самым обеспечивалась защита экипажа вертолёта со стороны днища, бортов и спинки сидений. В последующих конструкциях бронированных сидений компаний Norton[15], Ceradyne, Simula, Martin-Baker -«Helicopter Armored Crashworthy Seats Mark 1 (HACS 1)» броня уже входит в конструкцию сидения, чем достигается снижение общей массы конструкции[16].

Для защиты пилотов с передних направлений обстрела по неотложному запросу был разработан грудной щиток «протектор», из брони HFC, закрывавший грудную часть туловища.

Практически в тот же период в США компанией Goodyear Aerospace Corp. была создана и получила распространение броня HFC (англ. Hard Faced Composite Armor) комбинированная броня с лицевым слоем высокой твердости[17]. В качестве тыльного слоя брони HFC был использован стеклотекстолит на основе жгутовой стеклоткани-ровницы и полиэфирном связующим. Стеклотекстолит разработан Пикатинским арсеналом США.

С 1965 года броня HFC выпускается по военным техническим условиям MIL-A-46103 (MR), первоначально с пластинами корундовой керамики с содержанием оксида алюминия 85 или 95 процентов — материала, отличавшегося наиболее простой технологией изготовления (прессованием и последующим спеканием заготовок) и низкой стоимостью.


зднее, по мере освоения более эффективных материалов, и с пластинами на основе карбида кремния или карбида бора. В частности бронезащита экипажа и уязвимых систем вертолета AH-1G обеспечивалась новыми бронированными сидениями со сдвижными боковыми щитками, и установленными локально бронепанелями, из новой комбинированной брони марки Noroc, изготовленными отделением Protective Products Division компании Norton Company, на основе карбида бора и стеклотекстолита. Дата регистрации марки брони 1967 год.

На защитные свойства (противопульную стойкость) комбинированной брони положительное влияние оказывают следующие характеристики керамического материала[18][19]:

  • малые значения массовой плотности керамики — определяет массовые характеристики бронезащиты;
  • твердость — определяет эффективность разрушения бронебойного сердечника при взаимодействии с керамикой. В целом желательно, чтобы твердость керамического материалы была выше твердости бронебойного сердечника, а импеданс (или акустическое сопротивление) был максимальным;
  • прочность на сжатие — влияет на живучесть брони при обстреле;
  • модуль упругости — определяет волновую картину, скорость распространения волн напряжений в преграде;
  • вязкость разрушения — определяет живучесть брони при обстреле и её эксплуатационную живучесть;
  • характер разрушения керамики (интеркристаллитный или транскристаллитный) — определяет возможности энергопоглощения.

Уровень технологии комбинированной брони с керамикой по состоянию на 1970-е годы[20][21][22]

Материал керамики, марка
и метод получения
Массовая
плотность, г/см3
Материал тыльного слоя брони Толщина и масса
тыльного слоя
Поверхностная плотность
брони, кг/м2
Al2O3 AD85 или AD94 (CoorsTek),
прессование и спекание
3,40…3,62 Стеклотекстолит из жгутовой стеклоткани
«рогожка» (75 %) на полиэфирном связующем (25 %)
6,35 мм ; 12кг/м2 42…46
SiC KT (97 % SiC), Carborundum Co.,
прессование и спекание; реакционное спекание
3,1…3,13 тоже 6,35 мм ; 12 кг/м2 38…42
B4C Noroc или Norbide (Norton Co.)
горячее прессование
2,48…2,50 тоже 6,35 мм ; 12 кг/м2 33…36

Примечания к таблице:
Комбинированная броня в указанных массах обеспечивает защиту (по критерию V-50) от бронебойных пуль — APM2 патрона 7,62×63 мм с Д=100 м, и от пули М61 патрона 7,62×51 мм с Д=0 м;
Броня оптимизирована по критериям противопульной (7,62 мм бронебойная пуля) стойкости и массы. Использованные толщины керамических элементов не превышали 9 мм;
Соединение керамики с подложкой при помощи полисульфидного клея Pro-Seal 890 или аналогичного эластичного полиуретанового клея;
Поверх керамического слоя брони расположен 1-2 слоя плотной нейлоновой ткани для уменьшения вторичной осколочности.

Во второй половине 1970-х годов удалось за счет изготовления тыльного слоя брони из органотекстолита на основе арамидного волокна марки кевлар дополнительно снизить массу комбинированной брони на 10-12 процентов. Поскольку лучшие результаты ранее были получены при использовании карбида бора, композиция B4C/ органит была выбрана компанией Ceradyne Int. как наиболее перспективная при проектировании бронезащиты кабины вертолёта AH-64, включавшей в себя бронесидения экипажа, боковые щитки, панели пола кабины, а также элементы защиты агрегатов двигателя, гидроусилителей и системы управления вертолётом. Позднее, с 1980-х годов, аналогичную броню использует в конструкции вертолётных бронесидений компания Martin-Baker[23] и другие.


Несколько ранее, с конца 1960-х годов, В США появляются требования по защите экипажей и систем вертолётов от 12,7 мм бронебойных пуль. В 1969 году компания Norton Company разработала комбинированную броню с карбидом бора для защиты от 12,7 мм бронебойных пуль, масса 1 м² брони 59 кг. Предназначалась для защиты экипажа и отдельных узлов опытного ударного вертолёта AH-56 «Шайен». Для сопоставимых дальностей стрельбы минимально необходимые массы комбинированной брони составляют порядка 55-64 кг/м2, но с учетом принятой тактической дистанции ведения огня по вертолёту 400—500 м, потребные массы брони для защиты от 12,7 мм бронебойных пуль, как правило, не превышают 50-55 кг/м2.

Средства индивидуальной бронезащиты лётных экипажей[править | править код]

Грудной щиток «протектор» совместно с бронированным сидением экипажа вертолёта позволил обеспечить его круговую защиту в секторе обстрела 360 градусов. Масса щитка 8,5 кг передавалась на кронштейн, расположенный в паховой области сидения, крепление к туловищу осуществлялось плечевыми ремнями[24]. Протектор был выпущен в количестве 500 экземпляров, прошёл лётные испытания, однако не нашёл применения, в силу своей громоздкости и по причине создаваемых помех пилотированию вертолёта. В качестве оперативной замены щитка-протектора был опробован в 1966 году и получил распространение бронежилет Т65 «Aircrewman Body Armor» и его модификации Т65-1 и Т65-2 «Aircrew Torso Armor». На смену последним пришёл унифицированный тремя видами вооружённых сил бронежилет, стандартизованный в 1968 году как «Body Armor, Small Arms Protective, Aircrewman». По выставленным требованиям жилет должен обеспечивать защиту от 7,62 мм бронебойной пули APМ2 патрона 7,62×63 мм с дистанции 100 ярдов, однако в реальных условиях применения показывал лучшую стойкость[25].

Для изготовления защитных вставок жилета применяли три типа керамических материалов. Класс 1: оксид алюминия, Класс 2: карбид кремния, и Класс 3: модифицированный карбид бора. Защитные вставки Класса 1 предназначались для применения только армейской авиацией, вставки Классов 2 и 3 применялись авиацией ВМС, ВВС и КМП США. Соответственно отличались они массой и стоимостью. Так масса двух защитных вставок регулярного размера (грудной и спинной) из оксида алюминия составляла 12,7 кг при стоимости 195 долл. При изготовлении из модифицированного карбида бора — 9,06 кг и 1018 долл. соответственно[26].

Применительно к средствам индивидуальной бронезащиты, после непродолжительного экспериментирования с формой и размерами составляющих керамический слой элементов, потенциально ориентированного на увеличение живучести брони, в США к началу 1970-х годов пришли к выводу о целесообразности изготовления керамического слоя брони в виде монолитных панелей[27]. При использовании последних обеспечивается устранение отдельных, тщательно подогнанных элементов, и соответственно их стыков — ослабленных мест, что позволяет максимально снизить массу брони. Напротив, в ряде европейских стран создание комбинированных бронепанелей для военной техники и элементов индивидуальной брони с керамикой, преимущественно на основе корунда, с повышенным содержанием оксида алюминия, в виде элементов малых размеров (50х50 мм и аналогичных) оставалось приоритетным еще несколько десятилетий на протяжении 1980—1990-х годов[28]. К ним относится керамико-пластиковая броня Grade 86, Grade 105 компаний Bristol Composite Materials Engineering Ltd. (Великобритания), CeramTec[18] (Германия) и ряд других.

Применительно к индивидуальной броне сухопутных войск, DARPA (в рамах финансирования программ разработки брони ESAPI) «за последнее десятилетие или около того потратила многие миллионы долларов в попытках уменьшить массу индивидуальной брони до уровня 17 кг/м2 при минимальных значениях достигнутого снижения»[29].

Применение[править | править код]

В авиации[править | править код]

В настоящее время комбинированная броня установлена на ударных вертолётах AH-64 «Апач», AH-1G, AH-1Q, AH-1S, противотанковых вертолетах А-129 «Мангуст», многоцелевых вертолетах UH-60 «Блэк Хоук», SA-341/SA-342 «Газель», Уэстленд «Линкс», лёгком разведывательно-ударном «Белл» OH-58D, разведывательно-ударных «Тигр», опытном RAH-66 «Команч» и целом ряде других летательных аппаратов.

В наземной технике[править | править код]

История развития брони и броневой защиты военной техники свидетельствует, что их эволюционирование происходит параллельно совершенствованию средств поражения вероятного противника. Подчиняясь этой общей закономерности, пути развития комбинированной брони определялись не только и не столько стремлением повышения её стойкости и снижения массы, сколько задаче экспериментальной отработки преград, рассчитанных на предпочтительное действие новых средств поражения. В наземной технике такие средства широко представлены боеприпасами (патронами) автоматического стрелкового оружия калибрами от 5,45 (5,56) мм до 14,5 мм, а также малокалиберных автоматических пушек с твердосплавными и тяжелосплавными бронебойными сердечниками. Возможности их срабатывания и разрушения при взаимодействии с керамическим слоем брони существенно отличаются от такового, характерного для сердечников из высокотвердой стали. По этой причине был расширен диапазон используемых керамических материалов, в частности за счет включения в него некоторых карбидов и боридов, в частности диборида титана.

К 1994 году разработана и принята на вооружение противопульная и противоснарядная композитная броня с керамикой Mexas немецкой фирмы IBD Deisenroth Engineering. Броня модульной конструкции используется в качестве навесной защиты на готовой конструкции бронированной машины из стали или алюминиевых сплавов. Конкретные состав и структура брони засекречены. Отмеченная практика распространяется на все разновидности комбинированной брони, предназначенной для защиты от бронебойных боеприпасов, калибром превышающим 12,7 мм.

Бронемодули Mexas использованы для повышения защищённости уже существующих боевых машин: основной танк Леопард 2 (Швеция Strv 122), Dingo ATF, разведывательный бронеавтомобиль Феннек, БМП ASCOD, БМП CV 9035 MKIII Дании, БТР Страйкер, Piranha IV, а также САУ PzH 2000. Позднее, начиная с 2005 года вместо бронемодулей Mexas были разработаны IBD и поставляются заказчикам модули усовершенствованной комбинированной брони AMAP (Advanced Modular Armour Protection).

Помимо компании IBD Deisenroth Engineering разработчиками и производителями бронемодулей пассивной защиты боевых бронированных машин (ББМ) лёгкой категории являются канадская компания DEW Engineering and Development (навесные модули многоцелевой ББМ «Страйкер» и её варианта — машины WCVD), и швейцарская компания RUAG Land Systems (комплекты бортовых модулей SidePro и модулей защиты горизонтальных проекций RoofPRO-P машины CV90).

См. также[править | править код]

  • Бетонная броня
  • Пластиковая броня

ru.wikipedia.org

В последнее время одной из мировых тенденций в бронировании боевой техники становится использование так называемой керамической брони, которая обладает меньшим весом в сравнении со стальной, одновременно с этим, не уступая в прочности броневой стали, а в чем-то даже превосходя ее. Одновременно с этим недостатками такой брони признают ее высокую стоимость по сравнению с броневой сталью. Применение керамической брони позволяет добиться повышения полезной нагрузки на шасси бронетехники за счет уменьшения массы бронирования, повышая при этом конечную стоимость боевой техники.

Одновременно с этим существуют и другие проблемы. Керамическая плитка рассеивает энергию пули или снаряда по всей своей площади, разрушаясь при этом, а при попадании в стыки разрушаются и соседние плитки. Все это ведет к снижению защитной площади, которая уменьшается соответственно площади поврежденных керамических плит. В настоящее время основной проблемой такой защиты является то, что керамические плиты не в состоянии противостоять многочисленным попаданиям, а также не пригодны к проведению ремонта в условиях войсковой эксплуатации. Минимальное расстояние между попаданиями без пробития должно быть достаточно высоким. При этом при воздействии на такую броню самодельных взрывных устройств плитка не может справиться, так как взрывная волна повреждает большое количество плит в жесткой панели и может подвергнуть экипаж воздействию осколков в незащищенной зоне. Оставшиеся плитки могут расшататься или просто выпасть с модуля.

Lockheed Martin UK работает над керамической броней стойкой к многократным попаданиям

Создание новых образцов легких средств улучшения живучести и защиты бронетехники, используемой в боевых условиях спецназом и армией Великобритании, получило новый импульс. Компания Lockheed Martin UK тесно сотрудничает с инженерами-исследователеями из Университета Суррея по вопросу придания керамической броне стойкости при многократных попаданиях. Керамические материалы, которые в настоящее время все чаще заменяют в броне сталь, хорошо защищают экипаж и технику от последствий поражения. Такая броня чрезвычайно устойчива к пробитию различными бронебойными средствами, являясь наряду с этим еще и более легкой, по сравнению с обычной броней.

Однако проблема, которая стоит перед производителями керамической брони, состоит в том, что преимущества повышенного уровня защиты и меньшей массы были уравновешены и недостатками, которые связанны с приклеиванием керамических бронепластин, для того чтобы связать их с подложкой. Такой метод крепления позволяет в случае попадании в керамическую броню выкрашивать ее по частям, что превращает ее в менее надежную, по сравнению с традиционной металлической броней. Особенно в случае защиты бронированных целей от многократных попаданий. Поэтому, для того чтобы сделать керамическую броню надежнее ее приходится делать тяжелее, а это уже ведет к снижению ее преимуществ.

В то же время ученые из Университета Суррея создали метод обработки поверхности керамической брони, для того чтобы улучшить прочность керамических композитных материалов как на основе карбида кремния, так и оксида алюминия. Данная разработка в состоянии повысить надежность такого рода брони в боевых условиях. «Однако несмотря на то, что керамическая броня обладает рядом преимуществ в сравнении с иными методами защиты, существуют еще некоторые проблемы», отмечает доктор Эндрю Харрис – инженер-исследователь из Университета Суррея.

В то же время ученый отметил тот факт, что тесные отношения с Lockheed Martin позволили им создать метод обработки керамических материалов, ведущий к улучшению эффективности такой брони. Сообщается, что ключом к повышению характеристик, которые были подтверждены испытаниями, стало предварительное кондиционирование керамических плит, перед их закреплением на подложке.

При этом снижение веса бронетехники становится для современной армии все более важным требованием, так как позволяет обеспечить быстрое развитие подразделений в наиболее конфликтных регионах, отмечает Стив Бурнэйдж главный конструктор Lockheed Martin UK. Проведенные испытания показывают, что при помощи обработки поверхности карбида кремния и оксида алюминия можно повысить прочность связей. Проведенные испытания продемонстрировали, что в случае обстрела 14,5-мм бронебойно-зажигательными боеприпасами повреждения металлической панели под керамической броней не произошло и при многократном близком попадании. В настоящее время ввод в эксплуатацию подобной брони является лишь вопросом времени не только для бронированных целей, но и для бронежилетов.

В дополнении к применению в военной сфере у предложенной технологии существует потенциал и в других областях, к примеру, в космосе, где керамические плитки применяются для защиты транспортных средств от негативных последствий, проявляющихся при их возвращения в атмосферу. Продолжить работы в этой области Lockheed Martin UK собирается с Лондонским центром (LCN) в Университетском колледже Лондона (UCL).

Российские разработки

Стоит отметить, что Россия – одна из первых в мире еще в середине 1970-х годов начала проводить систематические исследования по бронекерамике. Тогда в ходе проведения опытов и экспериментов с самыми различными металлокерамическими и керамическими материалами советские специалисты пришли к выводу о том, что по технологическим и физико-механическим параметрам наиболее перспективными в практическом применении представляются карбидокремниевая, карбидоборная и корундовая керамика.

Справедливости ради можно отметить, что в карбидокремниевой и корундовой керамике советские успехи были достаточно скромны. В 1980 году в НИИ Стали была отработана в опытном плане (в качестве противовеса английской броне «Чобхэм») защита лобовых узлов и деталей танков. Но ее практически сразу же сделало морально устаревшей появление динамической защиты. К тому же вопросы, которые были связаны с конструктивной живучестью керамической брони, все еще оставались не до конца решенными. В то же время в отношении легких боевых машин и средств индивидуальной защиты (СИЗ) актуальность керамической брони не только не уменьшилась, но и по ряду причин даже увеличилась, поэтому исследования в данной области осуществляются практически всеми создателями «легкой брони». К сожалению, в нашей стране, так называемая перестройка, сильно отбросила назад нашу промышленность. В плане совершенствования и производства отечественной броневой керамики мы были возвращены примерно на уровень 70-х годов.

В то же время требования, предъявляемые сегодня основными заказчиками (МВД, ФСБ, Минобороны), достаточно явно свидетельствуют нам о том, что разработка легких бронеструктур для средств индивидуальной бронезащиты (СИБ) высоких уровней, таких как 5-6а, не представляется выполнимой без применения керамической брони. При этом основным требованиям силовиков остается снижение массы брони. Для создателей СИБ они гораздо жестче, чем для разработчиков бронетехники. Поэтому разработчики СИБ выбирают наиболее легкие материалы – карбид бора и карбид кремния.

Дальнейшее же улучшение характеристик керамической брони для боевой техники должно проводиться по следующим направлениям. Первое – это повышение качества бронекерамики. Последние 2-3 года в НИИ Стали достаточно тесно сотрудничают с российскими производителями бронекерамики – ЗАО «Алокс», ОАО «НЭВЗ-Союз», ООО «Вириал» по вопросу отработки и улучшения качества керамической брони. Совместными усилиями удалось существенно повысить ее качество и довести его почти до уровня западных образцов.

Второе – это отработка рациональных конструктивных решений. Известно, что керамические плиты обладают особыми зонами вблизи их стыков, данные зоны снижают баллистические характеристики брони. С целью выравнивания свойств керамических панелей создана конструкция так называемой «профилированной» бронеплитки. Данные панели, к примеру, смонтированы на автомобиль «Каратель» и уже успели успешно пройти серию предварительных испытаний. Вес панелей класса защиты 6а составил 60 килограмм-сил на 1 кв. метр. Помимо этого, были отработаны структуры на основе корунда с подложкой из арамидов и СВМПЭ с весом всего в 45 килограмм-сил на 1 кв. метр для панелей защиты того же класса. Но использование таких панелей на боевой технике ограничено в связи с наличием ряда дополнительных требований (к примеру, стойкости в случае бокового подрыва взрывного устройства).

Третье – для бронетехники, такой как БТР или БМП, характерно достаточно плотное огневое воздействие противника, по этой причине предельная плотность поражений, которую в состоянии обеспечить керамическая бронепанель, выполненная по принципу «сплошного бронирования», может оказаться недостаточной. Решением этой проблемы может стать применение дискретных керамических сборок брони, состоящих из цилиндрических или шестигранных элементов, соразмерных средствам поражения (огневого воздействия). Дискретная компоновка брони позволяет обеспечить максимальную живучесть композитных бронепанелей, предельная плотность поражения которых вплотную приближается к аналогичному показателю для бронеконструкций из металла.

При этом новые весовые характеристики дискретных керамических бронеконструкций, имеющих основой стальной или алюминиевый бронелист на 5-10% превышают массу керамических панелей, имеющих сплошную компоновку. Однако преимуществом дискретных керамических панелей является отсутствие надобности в приклеивании ее к подложке. Данные бронеплиты уже были установлены и испытаны на опытных образцах БМД-4 и БРДМ-3. В настоящее время данные панели используются на этапе ОКР по проектам «Бумеранг» и «Тайфун».

Источники информации:
http://www.army-guide.com/rus/article/article_2318.html
http://vpk-news.ru/articles/9011
http://twower.livejournal.com/612904.html

topwar.ru

История возникновения брони

Первые упоминания о броне встречаются в средневековых источниках, речь идет о латах и щитах воинов. Главное их предназначение заключалось в защите частей тела от мечей, сабель, топоров, копий, стрел и прочего оружия.

С появлением огнестрельного оружия появилась необходимость отказаться от применения сравнительно мягких материалов при изготовлении брони и перейти к более прочным и устойчивым не только к деформациям, но и к условиям окружающей среды сплавам.

Со временем украшения, применяемые на щитах и доспехах, символизирующие статус и почёт знати, стали уходить в прошлое. Форма лат и щитов начала упрощаться, уступая дорогу практичности.

По сути, весь мировой прогресс свёлся к гонке скоростей изобретения новейших видов оружия и защиты от такового. Как результат, упрощение формы доспеха приводило к снижению стоимости (из-за отсутствия украшений), но повышало практичность. В итоге броня стала более доступной.

Железо и сталь нашли применение и далее, когда во главе угла встали качество и толщина брони. Явление нашло отклик в корабле- и машиностроении, а также при укреплении наземных сооружений и малоподвижных боевых единиц вроде катапульт и баллист.танки россии

Виды брони

С развитием металлургии в историческом плане наблюдались усовершенствования толщины оболочек, что постепенно привело к появлению брони современных типов (танковая, корабельная, авиационная и т. д.).

В современном мире гонка вооружений не прекращается ни на минуту, что приводит и к появлению новых типов защиты как средства противодействия имеющимся видам оружия.

Исходя из особенностей конструкции, выделяют следующие виды брони:

  • гомогенная;
  • армированная;
  • навесная;
  • разнесённая.

Исходя из способов применения:

  • нательная — любая броня, одеваемая для защиты тела, и неважно, что это – латы средневекового воина или бронежилет современного солдата;
  • транспортная — металлические сплавы в виде плит, а также пуленепробиваемое стекло, целью которого является защита экипажа и пассажиров техники;
  • корабельная — броня для защиты судов (подводной и надводной части);
  • строительная — вид, применяемый для защиты дотов, блиндажей и деревоземляных огневых точек (дзотов);
  • космическая — всевозможные противоударные экраны и зеркала для защиты космических станций от орбитального мусора и вредоносного воздействия прямых солнечных лучей в открытом космосе;
  • кабельная — предназначена для защиты подводных кабелей от повреждений и долговечной эксплуатации в агрессивной среде.

катаная гомогенная броня

Броня гомогенная и гетерогенная

Материалы, применяемые для изготовления брони, отражают развитие выдающейся конструкторской мысли инженеров. Доступность таких полезных ископаемых, как хром, молибден или вольфрам, позволяет разрабатывать высокопрочные образцы; отсутствие таковых создаёт необходимость разработки узконаправленных формаций. К примеру, броневых листов, которые легко бы балансировали по критерию соотношения цены и качества.

По назначению броня делится на противопульную, противоснарядную и конструкционную. Броня гомогенная (из одного материала по всей площади сечения) или гетерогенная (разнится по составу) используется при создании как противопульных покрытий, так и противоснарядных. Но и это еще не все.

Броня гомогенная имеет как одинаковый химический состав по всей площади сечения, так и идентичные химические и механические свойства. Гетерогенная же может иметь разные механические свойства (закалённая с одной стороны сталь, например).гомогенная стальная броня

Катаная гомогенная броня

По способу изготовления броневые (будь то гомогенная бронь или гетерогенная) покрытия делятся на:

  • Катаные. Это разновидность литой брони, прошедшей обработку на прокатном станке. За счёт сдавливания на прессе молекулы сближаются друг с другом, и происходит уплотнение материала. Данный вид сверхпрочной брони обладает одним недостатком: не поддаётся отливке. Используется на танках, но лишь в виде ровных пластин. На танковой башне, к примеру, требуется округлая.
  • Литые. Соответственно, менее прочные в процентном соотношении, чем предыдущий вариант. Однако такое покрытие может использоваться для башни танков. Литая гомогенная броня, разумеется, будет прочнее, чем гетерогенная. Но, как говорится, хороша ложка к обеду.

Предназначение

Если рассматривать противопульную защиту от обычных и бронебойных пуль, а также воздействия осколков малых бомб и снарядов, то такая поверхность может быть представлена в двух исполнениях: катаная гомогенная броня высокопрочная или гетерогенная цементированная с высокой прочностью как лицевой, так и тыльной сторон.

Противоснарядное (защищает от воздействия больших снарядов) покрытие тоже представлено несколькими типами. Самые распространённые из них — катаная и литая гомогенная броня нескольких категорий прочности: высокой, средней и низкой.

Ещё один тип — катаная гетерогенная. Представляет собой цементированное покрытие с закалкой с одной стороны, прочность которой убывает «в глубину».

Толщина брони по отношению к твёрдости в этом случае представляет собой соотношение 25:15:60 (наружный, внутренний, тыльный слои соответственно).литая гомогенная броня

Применение

Танки России, как и корабли, в настоящее время покрыты хромоникелевой или никелированной сталью. Причем если при строительстве кораблей используется стальной бронепояс с изотермической закалкой, то танки обрастают композитной защитной оболочкой, которая состоит из нескольких слоёв материалов.

К примеру, лобовая броня универсальной боевой платформы «Армата» представлена композитным слоем, непробиваемым для современных противотанковых снарядов калибра до 150 мм и подкалиберных стреловидных снарядов калибра до 120 мм.

А также используются противокумулятивные экраны. Трудно сказать, лучшая броня это или нет. Танки России совершенствуются, а с ними улучшается и защита.

Броня vs Снаряд

Конечно, маловероятно, что члены расчёта танка держат в голове подробные тактико-технические характеристики боевой машины, указывающие, какова толщина защищающего слоя и какой снаряд на каком миллиметре она сдержит, равно как и то, гомогенной является броня используемой ими боевой машины или нет.

Свойства современной брони нельзя описать одним лишь понятием «толщина». По той простой причине, что угроза от современных снарядов, против которых, собственно, и разработана такая защитная оболочка, исходит от кинетической и химической энергии снарядов.

Кинетическая энергия

Под кинетической энергией (лучше сказать «кинетической угрозой») подразумевается способность болванки снаряда прошить броню. К примеру, снаряд из обеднённого урана или карбида вольфрама пробьёт таковую насквозь. Гомогенная стальная броня бесполезна против попадания таковых. Нет никаких критериев, по которым можно утверждать, что 200 мм гомогенной эквивалентны 1300 мм гетерогенной.

Секрет противодействия снаряду кроется в расположении брони, что приводит к изменению вектора воздействия снаряда на толщу покрытия.толщина брони

Кумулятивный снаряд

Химическая угроза представлена такими типами снарядов, как противотанковый бронебойно-фугасный (по международной номенклатуре обозначается как HESH) и кумулятивный (HEAT).

Кумулятивный снаряд (вопреки устоявшемуся мнению и влиянию игры World Of Tanks) не несёт в себе воспламеняющей начинки. Его действие основано на фокусировании энергии удара в тонкую струю, которая, благодаря высокому давлению, а не температуре, прорывает защитный слой.

Защитой от подобного рода снарядов служит наращивание так называемой фальш-брони, которая принимает на себя энергию удара. Простейшим примером является обтягивание танков сеткой-рабицей от старых кроватей во времена Второй мировой войны советскими солдатами.

Израильтяне защищают корпуса своих «Меркав», прикрепляя к корпусу стальные шары, висящие на цепях.

Ещё одним вариантом является создание динамической брони. При столкновении направленной струи от кумулятивного снаряда с защитной оболочкой происходит детонация броневого покрытия. Взрыв, направленный в противовес кумулятивное струе, приводит к рассеиванию последней.лучшая броня

Фугас

Действие бронебойно-фугасного снаряда сводится к обтеканию корпуса брони при столкновении и передаче огромного ударного импульса через слой металла. Далее, как кегли в боулинге, слои брони толкают друг друга, что приводит к деформации. Таким образом, бронепластины разрушаются. Причём слой брони, разлетевшись, наносит травмы экипажу.

Защита от фугасных снарядов может быть такой же, как и от кумулятивных.

Заключение

Одним из исторически зафиксированных случаев применения необычных химических составов для защиты танка является инициатива Германии покрывать технику циммеритом. Делалось это для защиты корпусов «Тигров» и «Пантер» от магнитных мин.

В состав циммеритовой смеси входили такие элементы, как сульфат бария, сульфид цинка, древесные опилки, пигмент охры и связующее вещество на основе поливинилацетата.

Использование смеси началось в 1943 г. и закончилось в 1944-м по той причине, что засыхание требовало нескольких суток, а Германия на тот момент находилась уже в положении проигрывающей стороны.

В дальнейшем практика применения такой смеси нигде не нашла отклика ввиду отказа от употребления пехотой ручных противотанковых магнитных мин и появления значительно более мощных видов оружия — противотанковых гранатомётов.

fb.ru

Комбинированная броня, реже многослойная броня или композитная броня от англ. composite armour — тип брони, состоящий из двух или более слоёв металлических или неметаллических материалов. Основным назначением различных видов комбинированной брони, как правило, является защита от кумулятивных боеприпасов и применяется такой вид защиты прежде всего на бронетехнике.

Разработка комбинированной брони для танков была начата практически одновременно в СССР и США во второй половине 1950-х годов и применялась на ряде опытных танков США того периода. Тем не менее, среди серийных танков комбинированная броня была применена на советском основном боевом танке Т-64, чьё производство было начато в 1964 году[1], и использовалась на всех последующих основных боевых танках СССР. На серийных танках других стран комбинированная броня появилась только в 1979—1980 годах на танках «Леопард 2» и «Абрамс» и с 1980-х годов стала стандартом в мировом танкостроении. Из-за высокой по сравнению с гомогенной бронёй стоимости и необходимости применения броневых преград большой толщины и веса для защиты от современных кумулятивных боеприпасов, применение комбинированной брони ограничивается основными боевыми танками и, реже, основным или навесным дополнительным бронированием БМП и других лёгких бронемашин.

Противопульная комбинированная броня с керамикой

Испытания обстрелом комбинированной брони оксид алюминия-органотекстолит, суммарной толщиной 20 мм и поверхностной плотностью 47,7 кг/м², пулей БЗ патрона 7,62×39 мм согласно требованиям STANAG 4569 Уровень 2.

Являясь разновидностью конструктивной брони, комбинированная броня с керамическим лицевым слоем и подложкой из армированного пластика обладает рекордной стойкостью к действию бронебойных пуль при обстреле под малыми углами от нормали, что непосредственно связано с высокой (не менее 70 единиц по шкале Роквелла, HRC ) твердостью, малой массовой плотностью керамического слоя. В условиях обстрела комбинированной брони под углами, близкими к нормали, её масса (сравнивается поверхностная плотность, кг/м²) в 2-3 раза меньшей массы равностойкой стальной брони высокой твердости. Именно поэтому такая броня первоначально, еще в 1960-е годы, нашла применение для защиты экипажей и некоторых уязвимых агрегатов вертолётов, низкая скорость которых и действие в зонах досягаемости огня пехотного оружия, при практически круговом обстреле, обуславливают благоприятные для этого вида брони условия взаимодействия с поражающим средством.

Противопульная комбинированная броня состоит из лицевого слоя, выполненного в виде керамических элементов (пластин), и подложки из армированных пластиков. Высокая стойкость такой брони обуславливается эффективным разрушением на высокотвёрдом лицевом слое сердечников бронебойных пуль с последующим удержанием образующихся осколков керамики и сердечника энергоёмким тыльным слоем брони. Принципиальным является характер разрушения керамического слоя брони по типу «конуса разрушения», образованного системой радиальных и кольцевых трещин, направленного в сторону тыльного слоя и увеличивающего присоединенную массу брони. Вместе с тем обширная область разрушения керамического слоя, наряду со значительными деформациями подложки в месте удара, в частности, в виде расслоений слоистых пластиков, обуславливают низкую, в сравнении с гомогенной сталью, живучесть керамической брони. В силу указанных причин, на протяжении нескольких десятилетий, область ее применения практически ограничивалась объектами, при обстреле бронезащиты которых низкая живучесть не являлась критичным фактором — летательными аппаратами, в первую очередь, вертолётами, и авиационными средствами индивидуальной бронезащиты.

История создания авиационной комбинированной брони

Толчком к созданию и широкому применению комбинированной брони с керамикой послужили военные действия США в Юго-Восточной Азии 1960-х годов. Массированное применение вертолётов для целей разведки, переброски войск и снаряжения, огневой поддержки и эвакуации раненых, показало их повышенную уязвимость со стороны наземного огня легкого пехотного оружия. Общее число сбитых вертолётов превысило четыре тысячи[5]. Анализ потерь позволил установить, что в тот период времени, на данном ТВД, основным средством поражения вертолётов являлось лёгкое автоматическое стрелковое оружие калибра 7,62 мм.

Для защиты кабины пилотов, жизненно-важных агрегатов и систем летательных аппаратов США, комбинированная броня с керамикой применяется с 1966 года. В период Вьетнамской войны броня с керамикой была установлена на вертолетах «Белл» UH-1B/C/D, AH-1 «Хью-Кобра», OH-58, Сикорский CH-54, на военно-транспортном самолете С-130, тактическом истребителе А-7 «Корсар» и на некоторых других машинах. В ряде случаев броня с керамикой заменила собой уступающую ей по весовой эффективности разнотвёрдую стальную броню DPSA (Dual Property Steel Armor). Так установка на вертолете AH-1G сидения из керамико-пластиковой брони с соотношением слоев: карбид бора 9,6 мм + стеклопластик 6,4 мм, вместо сидения из разнотвердой стали позволило снизить массу последнего на 10,4 кг[6].

Комбинированная броня марки Starmat (дата регистрации марки 1965 год) компании Aerojet General Corp. с лицевым слоем из корундовой керамики марок AD85 или AD95 и подложкой из алюминиевого сплава 2024-Т4 устанавливалась на первых модификациях вертолетов UH-1 и CH-54, в порядке их оперативной доработки в строевых частях. Бронепанели соединялись внахлестку и крепились непосредственно к трубчатому каркасу сидений 1-го и 2-го пилотов вертолета UH-1B. В специальных полозьях по бортам кабины устанавливались сдвижные бронепанели суммарной массой 49,6 кг, каждая панель на стороне соответствующей дверцы кабины. Бронепанели обеспечивали защиту боковой проекции пилота, и сдвигались назад при посадке или высадке экипажа из машины. Суммарная масса бронированного сидения 65 кг. Требованиями по защите экипажа вертолета предусматривалось обеспечение 100 процентного непробития бронезащиты при стрельбе 7,62 мм бронебойной пулей М61 с дистанции 100 ярдов (91 м), угол соударения (от нормали) 15 градусов. Тем самым обеспечивалась защита экипажа вертолёта со стороны днища, бортов и спинки сидений. В последующих конструкциях бронированных сидений компаний Norton[9], Ceradyne, Simula, Martin-Baker -“Helicopter Armored Crashworthy Seats Mark 1 (HACS 1)” броня уже входит в конструкцию сидения, чем достигается снижение общей массы конструкции. Для защиты пилотов с передних направлений обстрела по неотложному запросу был разработан грудной щиток «протектор», из брони HFC, закрывавший грудную часть туловища.

Практически в тот же период в США компанией Goodyear Aerospace Corp. была создана и получила широкое распространение броня HFC (англ. Hard Faced Composite Armor) комбинированная броня с лицевым слоем высокой твердости. В качестве тыльного слоя брони HFC был использован стеклотекстолит на основе жгутовой стеклоткани-ровницы и полиэфирном связующим. Стеклотекстолит разработан Пикатинским арсеналом США.

С 1965 года броня HFC выпускается по военным техническим условиям MIL-A-46103 (MR), первоначально с пластинами корундовой керамики с содержанием оксида алюминия 85 или 95 процентов — материала, отличавшегося наиболее простой технологией изготовления (прессованием и последующим спеканием заготовок) и низкой стоимостью. Позднее, по мере освоения более эффективных материалов, и с пластинами на основе карбида кремния или карбида бора. В частности бронезащита экипажа и некоторых уязвимых систем вертолета AH-1G обеспечивалась новыми бронированными сидениями со сдвижными боковыми щитками, и установленными локально бронепанелями, которые были изготовлены из новой комбинированной брони марки NOROC, компании Norton Company, на основе карбида бора и стеклотекстолита. Дата регистрации марки брони 1967 год.

На защитные свойства (противопульную стойкость) комбинированной брони положительное влияние оказывают следующие характеристики керамического материала:

  • малые значения массовой плотности керамики — определяет массовые характеристики бронезащиты;
  • твердость — определяет эффективность разрушения бронебойного сердечника при взаимодействии с керамикой. В целом желательно, чтобы твердость керамического материалы была выше твердости бронебойного сердечника, а импеданс (или акустическое сопротивление) был максимальным;
  • прочность на сжатие — влияет на живучесть брони при обстреле;
  • модуль упругости — определяет волновую картину, скорость распространения волн напряжений в преграде;
  • вязкость разрушения — определяет живучесть брони при обстреле и её эксплуатационную живучесть;
  • характер разрушения керамики (интеркристаллитный или транскристаллитный) — определяет возможности энергопоглощения.

Применение

В авиации

В настоящее время комбинированная броня установлена на ударных вертолётах AH-64 «Апач», AH-1G, AH-1Q, AH-1S, противотанковых вертолетах А-129 «Мангуст», многоцелевых вертолетах UH-60 «Блэк Хоук», SA-341/SA-342 «Газель», Уэстленд «Линкс», лёгком разведывательно-ударном «Белл» OH-58D, разведывательно-ударных «Тигр», опытном RAH-66 «Команч» и целом ряде других летательных аппаратов.

В наземной технике

 Керамические бронеэлементы из оксида алюминия комбинированной брони MEXAS light, установленной на бронеавтомобиле ATF Dingo (IDET 2007)

 Керамические бронеэлементы из карбида кремния марки SICADUR для бронированных машин (IDET 2007), изготовитель компания CeramTec (ФРГ)

История развития брони и броневой защиты военной техники свидетельствует, что их эволюционирование происходит параллельно совершенствованию средств поражения вероятного противника. Подчиняясь этой общей закономерности, пути развития комбинированной брони определялись не только и не столько стремлением повышения её стойкости и снижения массы, сколько задаче экспериментальной отработки преград, рассчитанных на предпочтительное действие новых средств поражения. В наземной технике такие средства широко представлены боеприпасами (патронами) автоматического стрелкового оружия калибрами от 5,45 (5,56) мм до 14,5 мм, а также малокалиберных автоматических пушек с твердосплавными и тяжелосплавными бронебойными сердечниками. Возможности их срабатывания и разрушения при взаимодействии с керамическим слоем брони существенно отличаются от такового, характерного для сердечников из высокотвердой стали. По этой причине был расширен диапазон используемых керамических материалов, в частности за счет включения в него некоторых карбидов и боридов, в частности диборида титана.

К 1994 году разработана и принята на вооружение противопульная и противоснарядная композитная броня с керамикой Mexas немецкой фирмы IBD Deisenroth Engineering. Броня модульной конструкции используется в качестве навесной защиты на готовой конструкции бронированной машины из стали или алюминиевых сплавов. Конкретные состав и структура брони засекречены. Отмеченная практика распространяется на все разновидности комбинированной брони, предназначенной для защиты от бронебойных боеприпасов, калибром превышающим 12,7 мм.

Бронемодули Mexas использованы для повышения защищённости уже существующих боевых машин: основной танк Леопард 2 (Швеция Strv 122), Dingo ATF, разведывательный бронеавтомобиль Феннек, БМП ASCOD, БМП CV 9035 MKIII Дании, БТР Страйкер, Piranha IV, а также САУ PzH 2000.

Помимо компании IBD Deisenroth Engineering разработчиками и производителями бронемодулей пассивной защиты боевых бронированных машин (ББМ) лёгкой категории являются канадская компания DEW Engineering and Development (навесные модули многоцелевой ББМ «Страйкер» и её варианта — машины WCVD), и швейцарская компания RUAG Land Systems (комплекты бортовых модулей SidePro и модулей защиты горизонтальных проекций RoofPRO-P машины CV90).

 

polz.kz

Комбинированная броня

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.